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RAPORT FINAL 

Proiect COFUND-LEAP-RE D3T4H2S 

(martie 2024 – februarie 2025) 

- Contract nr. 11/2024 din 21.03.2024; 

- UN MODEL DIGITAL BAZAT PE DATE PENTRU RECIPIENTE DE STOCARE A 
HIDROGENULUI RASPUNZAND PROVOCARILOR DE TRANZITIE 
ENERGETICA. 

Proiect COFUND-LEAP-RE D3T4H2S; 

Acest raport final se referă și la etapa a 3-a a proiectului (Sectiunea 5 - Cel mai semnificativ rezultat obţinut) ce s-
a desfașurat în perioada 1 ianuarie - 14 februarie 2026. Deși obiectivele UGAL ale proiectului au fost atinse în 
primele 2 etape (martie 2024 -decembrie 2025), etapa a 3-a a fost rezultatul prelungirii contractului pentru a asista 
eventual anumiți parteneri straini să-și relizeze sarcinile din proiect. Aceasta etapă a fost folosită practic pentru 
asigurarea publicării articolului nostru referitor la crearea unei metode de optimizare a structurii materialelor 
compozite (Sectiunea 5). In acest interval, am răspuns cerințelor stiințifice ale evaluatorilor  articolului nostru (IF 
1.7 și SciteScore 6.1) și cerințelor tehnice ale biroului editorial. 

1. Obiectivele prevăzute/realizate; 

Colectivul de cercetători ai Universitǎţii Dunarea de Jos din Galaţi (partener UGAL)– prof. V. 
Mînzu, prof. E. Rusu, postdoctorand A.-M. Chiroșcă – a facut parte alături de alte cinci colective, 
S Vertical (Medium Entreprise-Franța), ENSTA Bretagne (École nationale supérieure de techniques 
avancées Bretagne - P2), doua universități din Maroc și una din Republica Sud Africană, dintr-un 
consorțiu care si-a asumat realizarea acestui proiect. 

Obiectivul principal al colectivului UGAL a fost acela de a realiza părți din modelul bazat pe date 
al recipientelor de stocare a hidrogenului, la care s-a angajat consorțiul. Mai concret UGAL și-a 
asumat doua mari obiective prin pachetele de activități: 

- Elaborarea de modele de Machine Learning pentru materialele compozite din care se fabrică 
aceste recipiente în vederea predicției comportamentului mecanic al acestora. 

- Elaborarea de tehnici de optimizare însoțite de programele aferente care să poată fi utilizate 
la proiectarea optimală a materialelor compozite folosite la fabricarea recipientelor de 
stocare. 

UGAL a interacționat cu coordonatorul și partenerul P2, în special pentru recepționarea unor date 
ce se referă la teste de tractiune stress-strain (tensiune-elongație). De asemenea obiectivele concrete 
au fost discutate, în primă fază, cu acești parteneri. Ulterior, le-am rafinat în termeni științifici mai 
preciși de Machine Learning și optimizari cu algoritmi metaeuristici. 

Nr./Etapă Obiectiv prevăzut/realizat Comentariu 

(1) 

I - 2024 

Constructia de modele de tip data-driven 
ale materialelor compozite utilizate. 

Obiectivul vizează construcția de modele de tip 
machine learning (ML) ce caracterizeaza 
comportamentul termo-mecanic al materialelor 
compozite doar în zona elastică. 

(2) 

I - 2024 

Analiza echivalenței unui algoritm de tip 
machine learning cu un algoritm 
metaeuristic de optimizare. 

Obiectiv neprevazut inițial, pregatitor pentru Etapa a 
II-a. A dus la dezvoltarea unei versiuni de Particle 
Swarm Optimization folosit în etapa a II-a. 

(3) 

II-2025 

Modele de tip ML ce caracterizeaza 
comportamentul la tracțiune si termo-

Obiectivul vizează construcția de modele extinse de 
tip ML ce caracterizeaza comportamentul la tracțiune 
al materialelor compozite, atat în zona elastică cat si 
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mecanic al materialelor compozite, extinse 
si in zona plastica si de ruptura.  

plastică. Datele primite nu au caracterizat si zona de 
ruptură, ce nu poate fi abordată similar. 

(4) 

II-2025 

Algoritmi bazati pe AI pentru proiectarea 
optimala a recipientelor de stocare a 
hidrogenului din material compozit. 

Au fost vizate doua aspecte: (1) optimizarea 
structurii laminatelor compozite multistrat utilizand 
AI si (2) integrarea algoritmilor de tip ML și a 
algoritmilor metaeuristici precum PSO într-o 
structură de optimizare. 

Tabelul de mai sus sintetizează obiectivele principale menționate în planul de realizare al 
proiectului, ultima variantă. Fiecare activitate, sau grup de activități, a contribuit la atingerea unui 
obiectiv de etapă. 

Considerăm ca obiectivele proiectului au fost realizate și că activitățile si implementarea 
algoritmilor au prilejuit reflecții ce au dus la rezultate neprevăzute inițial; de exemplu, modelarea 
mai eficientă a unei familii de materiale compozite care au o caracteristică comună (fibra de carbon), 
sau structura de optimizare "Optimization FrameWork" care poate avea un cadru mai larg de 
utilizare (cu alte metaeuristici și/sau pentru alte tipuri de probleme). 

2. Prezentarea rezultatelor obținute 
În cele ce urmează, vom prezenta rezultatele obținute în legătură cu cele 4 obiective majore 

stabilite în proiect. Rezultatele vor fi prezentate prin cateva elemente esențiale, fără a aminti anumite 
detalii ce se gasesc în rapoartele de proiect înaintate coordonatorului și chiar cele doua rapoarte 
anuale înaintate UEFISCDI.  

OBIECTIVUL 1 

Construcția de modele de tip data-driven ale materialelor compozite utilizate. 

Obiectivul vizează construcția de modele de tip machine learning (ML) ce caracterizeaza 
comportamentul termo-mecanic al materialelor compozite doar în zona elastică. 

Cateva date partiale de test ne-au fost puse la dispozitie pentru a genera modele Machine 
Learning (ML, modele obtinute prin învatare automata) pentru dependeta deformatie relativa - 
presiune (stress-strain) caracterizand diferite specimene de material compozit supuse testului. 
Datele recepționate se refera la 12 specimene multistrat avand domenii diferite de deformare 
relativa (strain) şi presiune (stress). Datele transmise corespund aproximativ segmentelor din Figura 
1. 

 

Figura 1. Dependenta stress-strain în timpul testului de tractiune pentru cele 12 specimene. 
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Un specimen este obtinut printr-o asamblare a 16 straturi de material compozit, fiecare strat avand 
o anumita orientare (exprimata in grade)în raport cu directia de aplicare a încarcarii. În figura 2 este 
indicată stratificarea specimenului S9. codificata pe scurt astfel: [0/45/-45/90]2s, adica combinatie 
dublata şi simetrizata. 

Fiecare specimen este compus din 16 straturi compozite avand diferite orientari. Secvența de 
mai jos poate caracteriza starea specimenului si este folosită ca structură a unui data point: 

 1 2 16,  , , ,  ,  Strain Stress     

Figura 2. Specimenul S-9 multistrat de diferite orientari 

Pentru a obține modelele regresive de ML au fost parcurse cateva etape: 

 Prelucrarea datelor primite şi definirea setului de date (data set) pentru problema de ML. 

 Definirea problemei de predicție ca problema de constructie a unui model ML. 

 Definirea datelor de antrenare (training) și testare (testing) pentru diversele tipuri de 
modele ML. 

 Constructia de diverse tipuri de modele ML și analiza lor comparativa. 

MODELE OBȚINUTE PRIN REGRESIE LINIARA MULPTIPLĂ  

Regresia liniara multipla (RLM), pe care am retinut-o din setul de regresii lineare 
implementate în cazul proiectului, conține de asemenea termeni neliniari (produse ale predictorilor) 
şi utilizeaza tehnica "step - wise". Acest model a fost studiat pentru comparație cu modelele 
parametrice ce au fost implementate ulterior. 

Linear regression model: 
    Ss ~ 1 + x1*x9 + x1*St + x2*x13 + x2*St + x9*St + x12*St + 
x13*St 

O evaluare sintetică a acurateții acestui model poate fi făcută în figurile de mai jos: 
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Figura 3. Training: Predicții versus valori reale Figura 4. Testare: Predicții versus valori reale 

 

MODELE BAZATE PE "SUPPORT VECTOR MACHINES" (SVM) 

Au fost realizate mai multe modele SVM care au marcat o ameliorare a acuratetii predicției 
în raport cu SW Linear Regression. Support Vector Machine genereaza modele ML de buna 
calitate pentru problema noastra. Dintre modelele SVM construite în cadrul acestui studiu, 
prezentam aici numai doua modele SVM ce corespund obiectivelor noastre. Primul model SVM, 
numit SVM Regression 1, are o functie Kernel cubica si un set de Hiperparametri interni (definiti 
in sistemul MATLAB) desi antrenarea este facuta fare optimizarea hiperparametrilor. 

Hyperparameters Model: 
PolynomialOrder; Preset Quadratic SVM 
Kernel function: Cubic 
Kernel scale 3.001 
Box constraint: Automatic 
Epsilon Auto 

RMSEValid =      34.945 
RMSETest =       52.108 

Valorile RMSE sunt mai mici decat la modelul SW linear Regression, demonstrand ca modelul SVM 
funcționeaza mai bine. Figurile 5 si 6 ilustreaza acest lucru daca comparam cu figurile 3 si 4. 

 
Figure 5 Predicted versus real values for the training data set - 

SVM Regression 1 

 

 
Figure 6. Predicted versus real values for the test 

data set - SVM Regression 1 
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Am construit de asemenea un alt model SVM care predicteaza foarte bine exemplele critice, 
numit SVM Regression 2. Hiperparametrii modelului sunt 

Hyperparameters Model: 
Preset: Optimisable SVM, 
Kernel function: Quadratic 
Kernel scale: Automatic 
Standardisation data: Yes 

Procesul de antrenare optimizează combinația de hiperparametri printr-o optimizare Bayesiana. 
Acest model are predicții excelente pentru exemplele (data points) critice, dar statisticile modelului 
SVM Regression 2 sunt inferioare modelului SVM Regression 1. In concluzie, SVM Regression 
1 este mai bun decat al doilea model, în pofida optimizarii hiperparametrilor. 

MODELE BAZATE PE RETELE NEURONALE 

Am construit modele de tip Regression Neuronal Network (RNN) pentru predicții in 
contextul problemei descrise. Mai multe tipuri de RNN au fost considerate pentru a putea extrage 
modelul RNN ce ofera o acuratete ridicata si o memorie necesare acceptabila. 

Primul model, RNN 1, este o retea Narrow Neuronal Network cu un singur strat ascuns. 
Functia de antrenare fitrnet este apelata cu urmatoarele optiuni: 

    Preset Narrow NN; 
    Number of fully connected layers 1 
....'LayerSizes', 10, 
    'Activations', 'relu', 
    'Lambda', 0, 
    'IterationLimit', 1000, 
    'Standardize', true); 

Hiperparametrii sunt optimizati printr-o procedura euristica. Constatam ca valorile RMSE si 
MAE sunt mai bune decat cele ale modelelor anterioare, aratând o mai buna acuratețe la predicție, 
desi dimensiunea modelului este de doar 8 kB. 

Modelul cu cea mai mare acuratete în predicție este o alta Regression NN, modelul RNN2. 
Este vorba de un model regresiv RNN cu 3 straturi, ai carui hiperparametri sunt gasiti utilizand 
optimizare Bayesiana. 

Preset Optimizable NN 
Iteration limit: 1000 
Optimiser: Bayesian optimisation 
 
RNN2 = fitrnet(... 
    predictors, ... 
    response, ... 
    'LayerSizes', [166 280 298], ... 
    'Activations', 'relu', ... 
    'Lambda', 3.6315e-08, ... 
    'IterationLimit', 1000, ... 
    'Standardise', true); 

Pretul care trebuie platit pentru aceasta acuratețe este dimensiunea modelului, 1MB, care 
este cea mai mare. Figurile 8 și 9 atestă foarte buna acuratețe a ecestui model RNN2 
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Figure 7. Predicted versus real values - the training of 
RNN2 

 

 
Figure 8. Predicted versus real values - the test 

of RNN2 

 Analiza predicțiilor obtinute cu diverse modele 

O sinteză clară a performanțelor modelelor construite și reținute spre a fi folosite este dată în tabelul 
1. 

 

 Statistics 
SW Linear 
Regression 

SVM 
Regression 1 

SVM 
Regression 2 

RNN1 RNN2 

Training results 

RMSE 52.045 34.93 46.903 41.135 6.375 

R-Squared 0.98 0.99 0.98 0.99 1. 

MAE 37.42 28.324 31.44 19.132 3.9465 

Test results 

RMSE 91.091 52.108 86.383 99.206 34.385 

R-Squared 0.97 0.99 0.98 0.97 1. 

MAE 66.667 43.38 66.255 67.875 19.829 

Model size 22 kB 16 kB 40 kB 8 kB 1 MB 

Tabelul 1. Statistici ale proceselor de antrenare si testare si dimensiunea modelului pentru 
diferitele modele retinute 

 Generarea unor date noi de test pentru predicție, inexistente in datele initiale și analiza 
rezultatelor. 

Au fost considerate specimene cu orientari generate aleator, care, altfel spus, nu au contribuit la data 
setul inițial utilizat în construirea Modelului ML. Apoi am comparat predicțiile pentru aceste 
specimene cu rezultatele simulatorului DIGIMAT (care pot fi considerate ca fiind cele rezultate din 
testele fizice de tracțiune). 
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Figura 9. Comparatie între valorile reale si cele predictate pentru cele 4 specimene generate 
aleator 

Acuratețea este remarcabilă. În plus, RNN2 dă dovadă de o putere de generalizare importantă. De 
fapt, domeniul de reprezentare al acestui model va fi garanția utilizării sale, ulterior, și în structura 
de optimizare OFW. 
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OBIECTIVUL 2 

Analiza echivalenței unui algoritm de tip machine learning cu un algoritm metaeuristic de 
optimizare. 

Pînă la sincronizarea activităților cu partenerii, întrucât proiectul a fost demarat cu cateva luni 
mai târziu, UGAL a continuat unele cercetari anterioare ale membrilor echipei în domeniul utilizării 
unor metaeuristici, cum ar fi Particle Swarm Optimization, în conjuncție cu Machine Learning și a 
obtinut rezultate utile în faza a doua a proiectului D3T4H2S. 

Multe probleme de decizie optimală necesită utilizarea unor algoritmi metaeuristici (AM) 
specifici Inteligenței Artificiale (AI) care caută soluția optimală, în special când funcția cost are 
caracteristici matematice dificile (lipsa derivabilității, neliniarități, parametri distribuiti, etc). Acesta 
este un subiect vast, tratat în literatura de decenii, care face din AM (algoritmi genetici, algoritmi 
evolutivi, optimizare cu roiuri de particule - Particle Swarm Optimisation-PSO, etc.) instrumente 
realiste şi eficiente pentru modulele de optimizare din diferite aplicații implicând optimalitate. 

Aceste instrumente sunt robuste şi flexibile, dar uneori pot genera un efort computațional 
foarte mare, ceea ce constituie o piedică în utilizarea lor. Există o abordare interesanta şi eficientă 
a membrilor echipei UGAL care permite înlocuirea unui AM cu un algoritm de Machine Learning 
(ML) echivalent, numai în faza de executie, pentru a reduce drastic efortul computațional. Membri 
ai echipei UGAL au propus anterior acestui proiect analiza unei posibile "echivalențe" între unii 
AM (algoritmi evolutivi și genetici) și algoritmi de ML. În această etapă, membrii echipei UGAL 
au arătat ca un AM ce utilizeaza PSO poate fi "învațat automat" de către algoritmi de ML, pentru a 
fi reproduși în structuri optimale. 

În Figura10, procesul luarii unei decizii optimale este prezentat ca o evolutie in bucla închisa pe 
spatiul starilor X din proces.  

 

Figura 10. Algoritm Metaheuristic bazat pe PSO adaptiv pentru decizii optimale 

Modulul optimizator este bazat pe algoritmul PSO (o versiune adaptiva). O alta posibilitate 
investigata anterior este cea a Algoritmilor Genetici (specializare a Algoritmilor Evolutivi). În 
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general, putem utiliza un AM potrivit pentru problema de decizie optimala tratată. În mare, modulul 
optimizator pe care dorim să-l implementam raspunde la urmatoarea problema: 

"Cand procesul este caracterizat de setul de variabile X, care sunt valorile variabilelor de decizie U 
care optimizeaza functia obiectiv?" Soluție: Optimizatorul gaseste solutia U* utilizand AM ales. 

Principiu general: 

Daca un optimizator este construit utilizand un AM, putem realiza un algoritm de ML care să 
"capteze" optimalitatea modulului cu AM şi să reacționeze optimal la starea curenta X. 

 

Figura 11. Optimizator ML "echivalent" cu un optimizator realizat cu un AM 

Studiul este prezentat in lucrarea 

Mînzu, V.; Arama, I.; Rusu, E. 
Machine Learning Algorithms That Emulate Controllers Based on Particle Swarm Optimization 
- An Application to a Photobioreactor for Algal Growth. Processes 2024, 12, 991, 
https://doi.org/10.3390/pr12050991. 

În această lucrare, este luat ca exemplu particular de decizie optimală, comanda optimală a 
unui proces dinamic (un fotobioreactor). Această opțiune nu a afectat generalitatea prezentării. Cu 
acest prilej, a fost implementat algoritmul "Hybrid Topology Pasticle Swarm Optimization" adaptiv 
folosit în etapa a doua a proiectului D3T4H2S. 

 

 

 

OBIECTIVUL 3 

Modele de tip ML ce caracterizeaza comportamentul la tracțiune si termo-mecanic al 
materialelor compozite, extinse si în zona plastică și de ruptură. 

Obiectivul vizează construcția de modele extinse de tip ML ce caracterizeaza comportamentul 
la tracțiune al materialelor compozite, atat în zona elastică cât și plastică. Datele primite nu au 
caracterizat si zona de ruptură, pentru că nu poate fi abordată similar. 

Pentru a obține modelele regresive de ML care acoperă zona liniară (elastică) si zona neliniară 
(plastică) au fost parcurse cateva etape: 

 Definirea la nivel tehnologic a problemei de modelare cu modele de ML a materialelor 
compozite, în zona elastică si plastică. 

Partenerii S VERTICAL şi ENSTA Bretagne au furnizat date referitoare la specimene de materiale 
compozite (MC), dar mai complete față de etapa 1. Specimenele de MC sunt fabricate din fibra de 
carbon AS4, iar matricea din rasina epoxidica 8552. Matricea este dublu ranforsată cu poliamide 
(PA6, PA12, PA11) si dopată cu nanotuburi de carbon. Cunoscându-se parametrii de material si 
raportul volumic dintre fibra si matrice, testul de tractiune a fost înlocuit cu simulari de mare 
precizie bazată pe integrarea cu element finit, folosind simulatorul DIGIMAT-VA. Aceste simulari 
au furnizat date tabelare despre dependenta stress-strain, ca si cand au fost furnizate de teste de 
tractiune. 
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Cele trei MC sunt notate în continuare CF/6, CF/12, and CF/11, în funcție de poliamida folosită. 
Modelele obținute prin algoritmi de ML vor fi notate ML/6, ML/12, and ML/11 respectiv. 

Parametri de material: 
Density (tonne/mm3) [20-25°C], 
Matrix Young Modulus Em (MPa), 
Poisson ratio, Yield stress (MPa), 
Yield stress (MPa), 

Hardening modulus (MPa), 
Hardening exponent, 
Linear hardening modulus (MPa), 
Volume fraction 𝑉𝑓. 

 Prelucrarea datelor primite şi definirea setului de date (data set) pentru problema de ML. 

În plus de direcția de încărcare codificată printr-o eticheta, se aduga la Strain și Stress și cei 8 
parametri de material. Se obține astfel Table 2 cu primele 5 linii din datele primite pentru CF/6. 

Table 2. The first five lines of the dataset for CF/6, which consists of 203 data points. 

  LoadD    Density     Em   Poisson   YieldS     Hm    He    Lhm    Vf    Strain11    Stress11 
    LD11     1.14e-09    3000     0.37      25      3000    0.17    1000    0.6     5e-14       6.0014e-09 
    LD11     1.14e-09    3000     0.37      25      3000    0.17    1000    0.6     0.0005      60.014 
    LD11     1.14e-09    3000     0.37      25      3000    0.17    1000    0.6     0.000853    102.38 
    LD11     1.14e-09    3000     0.37      25      3000    0.17    1000    0.6     0.001353    129.17 
    LD11     1.14e-09    3000     0.37      25      3000    0.17    1000    0.6     0.001853    153.49 

 Definirea datelor de antrenare (training) și testare (testing) pentru diversele tipuri 
de modele ML. 

Ca si în cazul activitaților din etapa 1, pentru generarea algoritmilor de predicție inclusiv 
zona plastică, urmatoarele etape au fost parcurse: 

1. Generarea unui "dataset" suficient de mare pentru a construi modele de ML care pot 
generaliza raspunsul pentru orice pattern şi valoare Strain. 

2. Stabilirea datelor de antrenare, validare si testare pentru fiecare MC. 

 Dezvoltarea de algoritmi de predicție utilizand diferite modele de ML pentru un singur 
material compozit. 

Au fost considerte 5 modele de regresie ML. Pe lângă un model de regresie parametric (e.g. regresie 
liniara multipla step-wise), încă 4 modele parametrice: decision trees, Support Vector Machines, 
Gaussian Process Regression, Regression Neural Networks, adecvate obiectivului nostru. 

Pentru fiecare algoritm regresiv de ML (Prediction Algorithm - PA) dezvoltat în această etapa, s-a 
parcurs o întreaga Sesiune de Proiectare care se poate caracteriza prin: 

 A fost folosită Regression Learner Application (RLA) din mediul MATLAB pentru a 
analiza PA generați de diferite modele de ML, pe datele de antrenare si testare stabilite. 

 Au fost utilizate în cadrul RLA, pentru instruire cele 5 modele regresive de ML 
enumerate anterior. 

 Procedura a permis o comparație a parametrilor statistici ce carcaterizeaza fiecare PA 
generat. 

 Selectia celui "mai bun" PA s-a făcut pe baza acurateții de predicție exprimată, în 
principal, prin valoarea RMSE (root mean square error) între valoarea reală si cea 
predictată. 

Pentru a exemplifica (tot pentru CF/6), mentionam că am parcurs o Sesiune de Proiectare utilizand 
RLA din mediul MATLAB. Dintre toate modelele, cel mai acurat este o RNN. Scriptul 
PA6DamageRNN4 genereaza si utilizeaza acest model regresiv. 
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Mai întâi, funcția trainRegNN4 generează un algoritm ML antrenat. Functia fitrnet este apelată 
cu urmatorii parametri pentru a genera o RNN care constitue algoritmul de predicție construit. El 
este numit în proiect mdlNN4. 

 
regressionNeuralNetwork = 
fitrnet(... 
    predictors, ... 
    response, ... 
    'LayerSizes', 226, ... 
    'Activations', 'relu', ... 
    'Lambda', 6.366e-08, ... 
    'IterationLimit', 1000, ... 
    'Standardize', true); 

Apoi se apelează funcția de predicție a obiectului mdlNN4. Apelând mdlNN4.predictFcn, se 
calculează 40 de predicții pentru setul D6Test. Rezultatul este arătat în Figura12. Predicțiile sunt 
de o acuratețe remarcabilă. 

Toti pașii parcurși în subactivitațile A3 și A4 au fost repetati si pentru celelalte materiale, CF/12 și 
CF/11, cu tot ceea ce implcă: sesiuni de proiectare, scrieri de programe si teste.  

 

 
Figure 12. Stress versus strain functions: real and predicted values (with mdlNN4). 

 O metoda de reprezentare a dependenței stress-strain ca o functie, folosind predictorul 
furnizat de ML. 

 Posibilitatea reprezentarii familia de MC (CF/6, CF/12, CF/11) mai eficient la nivelul 
dimensiunii datelor de antrenare. 

Se poate pune întrebarea: Putem construi un model comun familiei de MC care să necesite o 
dimensiune mai mică a setului de date pentru antrenare, datorită caracteristicii comune, aceeași 
CF? 

În dezvoltarea pană la implementare a acestor idei au fost parcurse cateva etape pe care le sintetizăm 
mai jos. 

1) Am construit un model comun de predicție pentru CF/6 și CF/12, numit ML/6-12 prin unirea 
seturilor de date de antrenare corespunzătoare celor două modele ML/6 și ML/12. 
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2) Am construit un model comun exploratoriu de predicție pentru CF/6, CF/12 și CF/11, numit 
ML/6-12-11 pentru care la dataset-ul modelului ML/6-12 am adăugat un număr mic, 
n11=12, de data points caracterizând ML/11. Predicția pentru CF/11 nu a funcționat cu 
acuratețe. 

3) Printr-o procedură iterativă, sub controlul dezvoltatorului de model, a fost mărit succesiv 
numărul n11 de data points, până când s-a atins acuratețea dorită. 

Figura 13 prezintă grafic această dezvoltare de modele de predicție (TD6, TD12 și TD11 sunt datele 
de antrenare corespunzătoare). 

 

Figure 13. Construction phases of the common model for the entire family of composite materials 

În fiecare etapă au fost lanste Sesiuni de Proiectare utilizând cele 5 modele de ML. 

 Implementarea procedurii de determinare a unui model de ML comun pentru întreaga familie 
de MC. 

Procedura iterativă de la punctul 3) de mai sus trebuie implementată sub controlul dezvoltatorului 
de model comun pentru familia de MC, din doua motive: 

- Există mai multe soluții și implementatorul trebuie să aleagă în funcție de acuratețea dorită a PA; 

- Implementatorul trebuie să execute niște sesiuni de proiectare de modele ML utilizand RLA. 

În raportul de cercetare 2 și în articolul aferent 6 este prezentat algoritmul "GenerateCommonPA" 
care implementează procedura iterativă. 

 Caracterizarea celui mai bun model de regresie ML construit pentru familia de MC. 

Pe datele noastre, sesiunile de proiectare arată ca PA sunt fie RNN, fie GPR (Gaussian Process 
Regression). De data aceasta, soluția care a avut acuratețea necesară a fost generat de un model 
GPR. Figura 14 face comparația dintre valorile reale și cele predictate de modelul de regresie comun 
al familiei (GPR). 

Putem adăuga următoarele detalii: 

 Gaussian Process Regression, Bayesian optimization, 
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 Size of training data: 470 observations; validation: 5-fold cross-validation. 

 vrmse = 0.91445 (the RMSE using the test data set during the training procedure), 

 R2 = 1; MAE =0.59945 (the Mean Absolute Error in test during the training procedure; 

 RMSEValid = 1.970 (the RMSE after training using a test dataset composed of unseen data 
points). 

 

 

Figure 14. ML/6–12–11 prediction algorithm: predicted and real values for all the records. 

 

 

OBIECTIVUL 4 

Algoritmi bazați pe AI pentru proiectarea optimală a recipientelor de stocare a hidrogenului 
din material compozit. 

Proiectarea optimală a recipientelor de stocare a hidrogenului presupune, în primul rând, 
proiecatrea optimală a materialului compozit, în cazul nostru un laminat compozit cu 16 straturi cu 
orientări diferite. Celelate aspecte ale proiectării recipientului nu au intrat în zona de competență a 
UGAL, dar pot genera probleme de alegere optimală ce pot fi rezolvate cu structura de optimizare 
propusă de UGAL (OFW). 

Pentru a dezvolta o metodă și un instrument de optimizare a structurii unui laminat compozit au fost 
parcurse mai multe etape prezentate Raport de cercetare 3 intitulat: 

Contributions to the Optimization of Multilayer Composite Laminate Structures Using 
Particle Swarm Optimization and Machine Learning 

 Selectarea unui model regresiv de ML pentru laminate compozite cu putere mare de 
generalizare. 

În Etapa I, am văzut că, pentru zona elastică a laminatelor cpmpozite, modelul cu cea mai 
mare acuratețe în predicție este modelul RNN2. Ceea ce caracterizeză RNN2 nu este doar acuratețea 
predicțiilor pe datele de test, ci mai ales proprietatea de generalizare pe combinații noi de unghiuri 
care nu au facut parte din datele de antrenare si test (nevazute). Aceasta proprietate este, în general, 
dificil de apreciat. Generalizarea este posibilă în așa-zisul domeniu de reprezentare al modelului.  
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Existența unui astfel de PA (prediction algorithm) permite aflarea raspunsului oricarei 
combinații din domeniul de reprezentare al modelului. Optimizarea structurii LC înseamnă 
stabilirea unghiurilor 1, 2,…, 16 a.î. să se maximizeze sau minimizeze un indice de performanță. 

 Colaborarea unui algoritm de optimizare metaeuristic cu un model regresiv de ML pentru 
laminate compozite 

Soluția care a fost propusă este adoptarea unui cadru sistematic de optimizare (Optimization 
Framework – OFW). Figura 15 prezintă structura dezvoltată în proiect. 

 

Figure 15: Structure of the Optimization Framework 

Caracterul de sistematic ține de faptul că toate elementele ce caracterizează problema de 
optimizare, adica modelul obiectului sau sistemului, restrictiile și funcția obiectiv, sunt tratate de un 
singur modul, "Prediction and Computation Module". În figura 15 se considera că mecanismul de 
căutare a soluției optimale este asigurat de o variantă a algoritmului PSO (Particle Swarm 
Optimization). Acesta poate fi înlocuit, în funcție de problemă, cu un alt algoritm metaeuristic pe 
care computational intelligence îl oferă. De exemplu, Evolutionary Algorithms, GA, etc. 

Remarcă: Desi PSO este o metaeuristică cunoscută, în proiect a fost furnizată varianta actualizată 
pentru structura OFW si laminate compozite. De aceea am reamintit cele doua 
îmbunătățiri care o fac mai performantă, obținând algoritmul HTPSO adaptiv. 

Topologia hibridă 

Utilizând notațiile consacrate descrierii PSO, dăm mai jos, elementele suplimentare ale 
acestei duble topologii. Forma standard de comunicare a PSO – care definește și prima topologie – 
este cea care utilizează rețeaua formată din toate particulele din roi –care se deplasează– și cea mai 
buna soluție gasită la un moment dat, Pgbest. A doua topologie este dată de "vecinatatea socială". 
Particula #i va determina cea mai bună experiență locală, ( )Plbest i , ca fiind cea mai bună 
experiență din "vecinatatea socială", adică 3 particule cu care comunică, desemnate aleatoriu la 
fiecare iterațtie a algoritmului, plus ea însăși. În general, avem: 

 1( )= ( ) , , ( ) , ( ) ;    1, , ;d nPlbest i Plbest i Plbest i Plbest i d n  
 

Ca urmare, un nou termen apare în ecuația vitezei conținând 

Adaptarea vitezei particulelor 

Această tehnică modifică coeficienții C1, C2, C3, și w în timpul procesului de căutare. 
Obiectivul este să fie adaptați la faza procesului de căutare și să îmbunătățească convergența. 
Adaptarea este realizată prin creșterea liniară a coeficienților C1, C2, and C3 între valorile lor minimă 
și maximă. Simultan, parametrul w scade liniar 

Rezultatele comunicate în lucarea 

Mînzu, V.; Arama, I.; Rusu, E; 
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Machine Learning Algorithms That Emulate Controllers Based on Particle Swarm Optimization. 
Processes 2024, 12, 991; https://doi.org/10.3390/pr12050991 

arată, printre altele, și foarte buna comportare a versiunii "adaptive cu topologie hibridă" a 
algoritmului PSO în asigurarea mecanismului de cautare a soluției quasi-optime. 

 Studiu de caz 1– Compromis între rigiditate si rezistența la forfecare pentru un LC. 

Contextul de optimizare se refera la "off-axis oriented specimens", adică la LC avand paternurile 
de forma [a1/ -a1/ a2/ -a2/,..., a8/ -a8]. Aplicând predicția cu RNN2 (modelul cu putere mare de 
generalizare) se obțin raspunsurile pentru 3 specime (S2 ([±20]₈), S3 ([±30]₈), S4 ([±45]₈)), în figura 
16. Strain0 este valoarea maxima a elongatiei pentru intervalul de referință [0, Strain0]. 

 

Figure 16: Stress-strain curves for three off-axis oriented laminates 

Studiul de caz 1. Se caută o structura de LC din familia "off-axis oriented specimens", Soluția 
optimală trebuie să îndeplinească două condiții: 

1. Valoarea Stress pentru Strain0 trebuie să fie de minimum 1000 MPa. 
2. Curba stress–strain trebuie să fie cat mai apropiată de curba pentru S3. 

Semnificația este următoarea: Prima condiție setează un minim de rigiditate (stiffness) a.î. curba 
pentru optim va sta cat mai aproape de S2, care are o valoare maximă de 1500 MPa. A doua restricție 
reflectă necesitatea de a avea o buna rezistență la forfecare (shear), ceea ce înseamnă ca soluția 
trebuie să fie cat mai apropiată de curba S3. 

Această problema de optimizare (OP1) poate fi formulată astfel: 

I. Modelul obiectului sau sistemului ce face obiectul optimizării 
Obiectul este definit prin toate specimenele pentru care avem: 

 1 2 8
8[ ]  = 0,.  3, ,  . . 0x x xX   ( ,  =1, ,8ix R i  ). 

RNN2 este modelul regresiv pentru curba stress-strain. 
II. Restricții 

0 1000.Stress  , cu  0 stress 0Stress Strain . 

III. Functia obiectiv 
8

2

1

( ) ( 30)i
i

J X x -


 ; Criteriul de optim: 0
 

min  ( )
X

J J X


 . 
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Pentru a folosi platforma OFW propusă mai sus, trebuie sa proiectăm doar Prediction and 
Computation Module (PCM) care va reuni toate specificitățile problemei OP1. Rezultatul este o 
functie MATLAB JXRefCurve care se apelează după șablonul: 

/* Function call: [ssp0, J] ← JXRefCurve (x, xRef, MLmodel, Strain0, Stress0) */ 

Input: x, the vector with the positive angles of the balanced specimen, xRef, the 
reference stress-strain curve, MLmodel, the ML regression model, Strain0, the upper 
limit of the strain interval, Stress0, the minimum admissible stress value 
Output: J, the value of the objective function, and ssp0, the predicted stress 
value for Strain0. 

Argumentul x este soluția candidat –  analizată de HTPSO – pentru care se calculează J, valoarea 
functiei obiectiv. Dacă restricțiile nu sunt verificate, J ia valoarea infinit. In cazul nostru xRef 
corespunde curbei S3 ([±30]₈). Implementarea PCM, adică funcția JXRefCurve,este detaliată in 
raportul 3 și articolul din lista de livrabile. 

In general, functia obiectiv este de forma unde xRef este vectorul cu ungiurile pozitive din pattern: 

8
2

1

( ) ( )i i
i

J x x -xRef


  

Solutia optimă este dată mai jos: 

Unghiuri:  25.22/ -25.22/  27.53/ -27.53/  26.13/ -26.13/  26.94/ -26.94/ 

 26.99/ -26.99/  26.86/ -26.86/  25.63/ -25.63/  28.08/ -28.08/ 

Stress maxim=Stress(Strain0)= 1000.0 MPa 

Raspunsul acestui specimen este dat de Figura 17 si corespunde curbei colorată în verde. 

 

Figure 17:The optimal solution curve for OP1 compared to other oriented laminates. 

Rezultatul are o explicație logică. Pentru a avea o rigiditate cât mai bună, curba optimă trebuie să 
fie mai apropiată de S2, dar pentru o rezistență la forfecare cat mai bună trebuie sa fie cat mai 
apropiată de referința S3. Solutia optimă stabilește un echilibru între cele două tendințe. 

 Studiul eficacității structurii "Optimization Framework" – Studiu de caz 2. 
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Studiul de caz 2. Se caută o structura de LC din familia "off-axis oriented specimens", Soluția 
optimă trebuie să aibă structura [a/-a/ a/-a/... a/-a] și să asigure un răspuns de exact Stress0= 1000 
MPa pentru Strain0=0.017. 

Pentru un specimen caracterizat de ungiul a, valoare maximă Stress0 pentru Strain0 poate fi privită 
ca o funcție S(a)=stress(a, Strain0). 

Această problema de optimizare (OP2) poate fi formulată astfel: 

I. Modelul obiectului sau sistemului ce face obiectul optimizării 

Obiectul este definit prin toate specimenele pentru care avem: 
  20, 30a   

 RNN2 este modelul regresiv pentru curba stress-strain. 
II. Restricții 

Nu există în afară de a . 
III. Functia obiectiv 

0( )( ) S a SJ a  ; unde S0=1000. MPa; Performance index: 0
 

min  ( )
a

J J a


 . 

Trebuie sa proiectăm doar "Prediction and Computation Module" (PCM) care va reuni toate 
specificitățile problemei OP2. Rezultatul este o functie MATLAB JFixPoint care se apelează 
după șablonul: 

/* Function call: J ← JFixPoint (x, MLmodel, Strain0, Stress0) */ 

/* Calculate the cost function for a specimen with the pattern [x. -x, x, -x, … , x, -x] */ 
Input: x, the positive angle of the balanced specimen, MLmodel, the ML regression 

model, Strain0, the given limit of the strain interval, Stress0, the imposed 
stress value for the Strain0. 

Output: J, the value of the cost function for the given arguments. 

O execuție tipică a OFW, care apelează în mod repetat funcția JFixPoint până la 
convergență, produce următoarele rezultate: 

Optimal a=26.43;  J0=1.136868e-13 ; S0 = 1000.00 MPa. 

Orientările optime ale straturilor: 26.43/-26.43/...../26.43/-26.43/ 

 
Figura 18. Curba stress-strain pentru soluția optimă a OP2 (a=26.43) și pentru celelalte trei 

laminate compozite 



18 
 

Curba asociată soluției optime este prezentată în figura 18. Funcția JFixPoint a fost apelată de 
4260 de ori, ceea ce ne dă o imagine a complexității computaționale pentru rezolvarea OP2 prin 
metoda propusă.Putem alege și o altă valoare pentru S0 = 900.00 MPa. În acest caz, OFW furnizează 
o altă soluție tipică: 

Optimal a=27.87;  J0=1.136868e-13 ;  S0 = 900.00 MPa. 

Orientările optime ale straturilor: 27.87/-27.87/...../27.87/-27.87/ 

De data aceasta, numarul de apeluri ale fumcției JFixPoint este 4320. Acest comportament 
variabil este, desigur, datorat faptului că HTPSO este un algoritm stochastic, cu soluții 
aproximative, dar precise la comvergență. 

Valorile minimă, medie, maximă și tipică, precum și deviația standard a indecelui de performanță 
J0 sunt furnizate de Table 3. Un alt fapt ce ilustrează natura stochastică a OFW este numarul de 
apelări, Ncalls, ale funcției ce implementează PCM. Ultimul integreaza și calculul criteriului de 
optim. O statistică pentru Ncalls este prezentată în linia a doua a acestui tabel, pentru aceleași 30 
de executii ale OFW. 

Table 3. OP1–Statistics on the performance index and call count for the PCM function. 

 min avg max typical Sdev 

J0 94.522 94.738 95.653 94.74 0.274 

Ncalls 3300 5987 8760 5940 1445 

Valoarea tipică pentru un lot de 30 execitii succesive este cea mai apropiată valoare a unei execuții 
de valoarea medie. Deviația standard a valorii Ncalls este destul de mare pentru ca inițializarea 
roiului de particule s-a facut într-o manieră simpla: 30 de particule – vectori cu 8 elemente pozitive 
– au fost distribuiți uniform în domeniul de căutare [20, 30]8. Aici este loc de ameliorare a procedurii 
de inițializare pentru o mai bună acoperire a domeniului. 

Tabelul 4 prezintă statistici similare pentru solutia optimă a OP2. 

Table 4. OP2–Statistics on the angle a, performance index, and call count for the PCM function. 

 min avg max typical Sdev 

a 26.4301 26.4304 26.4312 26.4304 0.0002 

J0 1.274074e-07 4.600905e-03 5.651415e-02 3.737492e-03 1.174176e-02 

Ncalls 140 254.8 413 252 67.2 

OP2 a fost rezolvată pentru diferite valori ale lui S0 (la elongația considerată Strain0) utilizand 
acelasi LC modelat de RNN2. Valorile lui S0 au fost alese să acopere domeniul dintre S2 și S3, adică 
900, 1000, 1100, 1200, și 1300 MPa. Soluțiile sunt date in Table 5, indicând ungiul a.pentru fiecare 
S0. 

Table 5. OP2–The solution a, and the performance index for the five runs 

S0 [MPa] 900 1000 1100 1200 1300 

a 27.87 26.43 24.98 23.52 22.04 

Rezultatele obținute prin simulări MATLAB au dovedit că ambele studii de caz sunt rezolvate 
eficient. 

Limitari în utilizarea platformei și programului OFW. 

Structura si programul OFW nu asigură rezolvarea unei OP referitoare la LC decât dacă modelul de 
regresie ML are într-adevăr o bună putere de generalizare și o utilizăm corect, adică în interiorul 
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domeniului de reprezentare al modelului de ML. Acesta este mai greu de stabilit a priori. El nu este 
atât de mare pe cât ne dorim să fie, a.î să nu abordăm problema cu precauție. Dezvoltatorul trebuie 
să stabilească a priori prin analiză limitele "geometrice" între care curbele asociate soluțiilor 
candidat se pot situa. Depinzând de dataset și de aplicația practică, utilizatorul poate presupune din 
start domeniul de reprezentare al modelului regresiv ML și să verifice prin teste și simulări dacă 
ipoteza este corectă. 

 

3. Indicatori de rezultat și eventuale nerealizări față de rezultatele 
estimate 

În planul de realizare al proiectului am definit 4 obiective majore. Ralizarea fiecărui obiectiv a fost 
marcată, pe lângă acumularea de cunoaștere pe fondul problemei și scrierea și testarea de programe 
de validare a progresului, de elaborarea unor materiale care pot dovedi atingerea obiectivului și care 
se constitue în livrabile ale proiectului. Se întâmplă ca fiecare obiectiv din cele patru să fi generat 
3 livrabile de tipuri diferite: 

- un raport care să descrie desfășurarea activităților care au dus la atingerea obiectivului; 

- un produs informatic: arhiva programelor scrise și testate pentru a da suport activităților 
asociate obiectivului; 

- un studiu publicat (articol de cercetare) într-o revistă ISI de foarte bună vizibilitate (într-un 
singur caz, revista este indexată în baze de date consacrate). 

Doar OBIECTIVUL 3 furnizează două astfel de grupări pentru că de fapt el este constituit din două 
sub-obiective. Unul este neprevăzut inițial, cel referitor la crearea unui model al familiei de trei MC 
cu scopul de a micșora volumul de date de antrenare. Tabelul de mai jos face bilanțul pe obiective 
al întregului proiect D3T4H2S.  

 

OBIECTIV 1: Constructia de modele de tip data-driven ale materialelor compozite utilizate 

Raport de 
cercetare 

Machine Learning models' construction for the load behavior of composite materials in the 
undamaged zone - Report of UGAL for the project Leap-Re D3T4H2S. 
PART I:Machine Learning Models for the Traction Test 

Programe Fisier arhiva: WorkMLModels.zip 

Studiu 
Publicat 
(articol) 

Green Hydrogen—Production and Storage Methods: Current Status and Future Directions. 
Energies 2024, 17, 5820; Section A5: Hydrogen Energy; https://doi.org/10.3390/en17235820  
Published: 21 November 2024; Impact Factor 3 (wos SCIE); Citescore: 6.2 (Q1). 

OBIECTIV 2: Analiza echivalenței unui algoritm de tip machine learning cu un algoritm metaeuristic de 
optimizare 

Raport de 
cercetare 

Machine Learning models' construction for the load behavior of composite materials in the 
undamaged zone - Report of UGAL for the project Leap-Re D3T4H2S. 
PART II: ML algorithms that Emulate Metaheuristic Algorithms for optimal decision-making 

Programe Arhiva disponibila la https://www.mdpi.com/article/10.3390/pr12050991/s1 

Studiu 
Publicat 
(articol) 

Machine Learning Algorithms That Emulate Controllers Based on Particle Swarm Optimization 
- An Application to a Photobioreactor for Algal Growth; Processes 2024, 12, 991. Published: 
13 May 2024; https://doi.org/10.3390/pr12050991 

OBIECTIV 3: Modele de tip ML ce caracterizeaza comportamentul la tracțiune si termo-mecanic al materialelor 
compozite, extinse si in zona plastica si de ruptura 

Raport de 
cercetare 1 

Implementation aspects of stress-strain characteristics' regression models for composite 
materials. 
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Part I: The modeling of the stress-strain characteristic -including the "damaged" zone. 
Part II: Machine Learning Predictions for the Comparative Mechanical Analysis of Composite 
Laminates with Various Fiber Orientations 

Programe 
Arhivă disponibilă la https://www.mdpi.com/article/10.3390/pr13030602/s1 
Fisier arhivă: ART_Matlb.zip 

Studiu 
Publicat 
(articol) 

Machine Learning Predictions for the Comparative Mechanical Analysis of Composite 
Laminates with Various Fibers. Processes, 13(3), 602.  Published: 20 February 2025. 
https://doi.org/10.3390/pr13030602  

Raport de 
cercetare 2 

Implementation of Machine Learning Models for Composite Materials with the Same Carbon 
Fiber but Different Matrices . 

Programe Fisier arhivă: JMSCE_supplementary.zip 

Studiu 
publicat 
(articol) 

A New Method to Predict the Mechanical Behavior for a Family of Composite Materials. 
Journal of Materials Science and Chemical Engineering. Vol.13 No.9. Published: 23.09.2025. 
https://www.scirp.org/journal/paperinformation?paperid=145844 ; 
DOI: 10.4236/msce.2025.139009 

OBIECTIV 4: Algoritmi bazati pe AI pentru proiectarea optimala a recipientelor de stocare a hidrogenului din 
material compozit 

Raport de 
cercetare 3 

Contributions to the Optimization of Multilayer Composite Laminate Structures Using Particle 
Swarm Optimization and Machine Learning 

Programe Fisier arhivă: OFW_Mtlb.zip  

Studiu 
Publicat 
(articol) 

Computers, Materials & Continua, vol. 87, no. 1, pp. 22, 2026; (IF 1.7; SCITESCORE 6.1). 
Optimal Structure Determination for Composite Laminates Using Particle Swarm Optimization 
and Machine Learning; https://www.techscience.com/cmc/v87n1/66113  

 

Addendum la livrabilele pentru Etapa 2025 

Lucrări prezentate la conferințe internaționale cu tematică conexă cu cea a proiectului D3T4H2S. 

Trei articole au fost acceptate să fie prezentate, în luna decembrie, la conferința internațională 
SGEM International Scientific Conferences on Earth & Planetary Science, Extended 
Scientific Sessions GREEN SCIENCES FOR GREEN LIFE. Schönbrunn Palace, Vienna 03 - 
06 December 2025  

https://sgemviennagreen.org/index.php  
Mihalcea, A.; Chirosca, A-M.; Rusu, L.; 
A new approach to green hydrogen research – challenges and solutions towards 
emission reduction and a cleaner maritime transportation 

Chirosca, A-M.; Popa, V-I.; Rusu, E. 
Assessment of green hydrogen production and potential utilization in the 
hydrodynamic environment of the Danube 

Bujor, A; Chirosca, A-M.; Gasparotti, C.; Rusu, E. 
Hybrid energy solutions: hydrogen integration in floating production, storage, and 
offloading units. 

Obiectivul 3 vizează construcția de modele extinse de tip ML ce caracterizeaza comportamentul la 
tracțiune al materialelor compozite, în zona plastică și de ruptură. Datele primite de la perteneri nu 
au caracterizat si zona de ruptură, care, de fapt, nu poate fi abordată similar. Predicția și structura 
rupturii nu pot fi abordate prin tehnici de ML. 
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Considerăm ca obiectivele proiectului au fost realizate și că activitățile plus implementarea 
algoritmilor au dus la rezultate neprevăzute inițial; de exemplu, modelarea mai eficientă (în sensul 
scăderii dimensiunii setului de antrenare) a unei familii de materiale compozite care au o 
caracteristică comună (fibra de carbon), sau structura de optimizare "Optimization FrameWork" 
care poate avea un cadru mai larg de utilizare (cu alte metaeuristici și/sau pentru alte tipuri de 
probleme). 

În octombrie 2025, LEAP-RE (Parteneriatul pe termen lung UE-UA) a organizat un Forum 
important al Părților Interesate la Bruxelles, în perioada 21-23 octombrie. În data de 22 Octombrie, 
2025 s-a organizat conferința "Scientific & Methodological Clusters" la care prof. V Mînzu a 
participat online la sesiunea "Grid Modelling Cluster" cu temele: a) Energy Planning challenges; b) 
Energy Modelling Approaches of the different speakers; c) Data availability and Data collection 
techniques. 

Indicatori de rezultat: 
- rapoarte de cercetare (studii): 5 
- articole publicate: 5 (4 ISI și unul indexat în baze de date consacrate) 

 - produse informatice: programele de implementare a modelelor ML si cele ale 
platformei Optimization Framework. 

 Arhive programe: 
 WorkMLModels.zip; 
 processes-12-00991-s001.zip; 
 (https://www.mdpi.com/article/10.3390/pr12050991/s1); 
 ART_Matlb.zip; 
 JMSCE_supplementary.zip; 
 OFW_Mtlb.zip . 

- articole susținute la conferințe internaționale: 3 

- participări la conferințe pe teme conexe: 

1. Milano, 8-11 online, octombrie 2024: LEAP-RE Pillar 1 Project Second Call: 
Mid-term scientific evaluation.) 

2. Bruxelles, 22 Octombrie 2025, online, LEAP-RE Forum anual, "Scientific & 
Methodological Clusters" , sesiunea "Grid Modelling Cluster" cu temele: a) 
Energy Planning challenges; b) Energy Modelling Approaches; c) Data availability 
and Data collection techniques. 

 

 

Diseminare rezultate prin: 

- site proiect https://www.d3t4h2s.ugal.ro/index.php  

- cele 5 publicatii în reviste. 

- participare la conferinta de la Milano (2024) si Bruxelles (2025) 
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4. Modul de atribuire și exploatare de către parteneri a drepturilor de 
proprietate (intelectuală, de producție, difuzare, comercializare etc.) 
asupra rezultatelor proiectului; 

În Articolul 10 al Acordului de Consorțiu sunt prevăzute toate regulile de protecție intelectuală a 
"Cunoștințelor Proprii" valabile pentru acest proiect. Ele sunt, după cunoștințele noastre, reguli 
obișnuite și echitabile. Regula de bază este că fiecare partener își asigură modul propriu de protecție 
a dreptului de proprietate. 

Activitatea de cercetare desfășurată în cadrul proiectului D3T4H2S nu a necesitat acțiuni specifice 
de protecție intelectuală. Această stare de lucruri rezultă din considerarea câtorva aspecte: 

 Activitățile derulate de UGAL au avut un caracter de cercetare științifică făra finalitate 
imediată în zona aplicării industriale aducătoare de profit. 

 Toate activitățile  UGAL se pot încadra, ca metodă de lucru, în zona "studiu simulat". De 
aceea, toate produsele informatice dezvoltate au servit studiului simulat fară finalitate 
economică și nu au trebuit protejate intelectual. 

 Rezultatele obținute au fost publicate în reviste de specialitate, practic integral, ca articole de 
cercetare axate pe ideile și tehnicile dezvoltate. Odată înțelese, părți interesate pot aplica 
ideile și metodele, prin effort propriu, pe propriile produse. 

 Colectivul UGAL a dezvoltat acest studiu simulat utilizând date furnizate de coordonator și 
P2. Nu ni s-a notificat vreo obligație de protectie intelectuală.  De altfel, majoritate datelor 
au rezultat din simulari ale partenerului P2 și au fost perturbate de către UGAL aleatoriu 
pentru augmentarea lor din necesități știițifice. 

Ceilalți parteneri îsi vor alege propriile modalități de protecție intelectuală, îm măsura în care este 
cazul. 

Difuzarea ideilor și metodelor dezvoltate în proiect s-a făcut prin publicații, unde toți autorii și-au 
dat consimțămâmtul publicării (după regulile academice). Nu există activități de producție sau 
comercializare de vreun fel. 

 

5. Impactul estimat al rezultatelor obținute, cu sublinierea celui mai 
semnificativ rezultat obținut. 

Este oportun să precizăm, încă o dată, ca toate activitățile de cercetare ale UGAL se pot 
încadra, ca metodă de lucru, în zona "studiu simulat". Acest studiu a avut ca obiectiv dezvoltarea 
de metode de aplicare a inteligenței artificiciale în două zone de interes: 

 Dezvoltarea de metode de predicție a comportamentului mecanic al materialelor compozite 
folosite la fabricarea tancurilor de transport al hidrogeniului. 

 Crearea unei metode de optimizare a structurii acestor materiale compozite prin simbioza 
dintre inteligența computațională și algoritmii de învățare automată (machine learning) 
utilizați la predicția comportamentului mecanic. 

Cele doua zone de interes au fost tratate în ambele etape ale proiectului. 

Impactul estimat al primei direcții de cercetare se răsfrânge, în special, asupra specialiștilor în 
materiale compozite, fie ei specialiști în știința materialelor sau profesioniști în fabricarea acestor 
materiale, în cunoașterea și utilizarea metodelor de predicție de tip machine learning. Ei vor ști sa 
folosească următoarele tehnici adaptate materialelor compozite: 

- alegerea variabilelor predictor din modelele regresive (de predicție) care să corespundă 
cerințelor de modelare și predicție ale specialiștilor ;  
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- modalități practice de codificare a exemplelor de date (data points), specifice materialelor 
compozite; 

- dezvoltarea, asistată sau nu de un software adecvat, a propriilor modele de ML care să 
realizeze predicțiile dorite de specialiști; 

- folosirea de către specialiști a modelelor de predicție, cu precauție, ținând cont de limitările 
de domeniu de reprezentare și capacitate de generalizare a acestora. 

Cercetarea științifică în domeniul materialelor compozite va fi desigur facilitată de existența unor 
astfel de modele de ML, în special cele care au făcut obiectul predilect al acestui proiect, modele 
de tracțiune tensiune – elongație atat în zona elastică cât și plastică. 

A doua zonă de interes a proiectului, crearea unei metode de optimizare a structurii materialelor 
compozite, poate aduce specialistului în știința materialelor o perspectivă nouă asupra optimizărilor 
pe care le poate aborda. De obicei, ei nu sunt specialiști în tehnici de optimizare. De aceea rezultatele 
obținute de UGAL le deschid noi perspective: 

- alegerea structurii materialui în cauză ca soluție a unei probleme de optimizare de mare 
complexitate computațională; 

- simbioza dintre un model de ML și un algoritm metaeuristic de optimizare, cum este Particle 
Swarm Optimization, poate fi cheia rezolvării problemei de optim; 

- formularea restricțiilor și a funcției obiectiv  ca elemente cheie în definirea problemei de optim 
pentru alegerea structurii materialului compozit; 

- utilizarea unui cadru de optimizare, cum este Optimization Framework propus de UGAL, pentru 
rezolvarea efectivă a problemei de optim referitoare la structura materialului compozit. Realizarea 
unui astfel de cadru poate fi inspirată de arhiva de programe furnizată de UGAL care poate ușura 
mult sarcina implemetării unui program croit pe necesitățile specialistului în știința materialelor. 

Cel mai semnificativ rezultat obținut 

 Considerăm că rezultatul cel mai semnificativ este plasat în a doua zonă de interes a 
proiectului, cea referitoare la crearea unei metode de optimizare a structurii materialelor compozite. 
Reluam aici figura 15, pentru a urmării, cu ușurința, contribuția adusă. 

 

Figure 15: Structure of the Optimization Framework 

Contribuția adusă este această structura de otimizare (Optimization Framework, pe scurt OFW) cu 
urmatoarele caracteristici: 

 Este format din două module ce comunică și lucrează în simbioză: unul este algoritmul bazat 
pe metaeuristica "HTPSO adaptiv", iar cea de al doilea este Modulul de Predicție și Calcule 
(PCM). 
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 Structura are un caracter sistematic pentru că separă taskurile. Tot ce ține de problema de 
optimizare este programat în PCM, în timp ce modulul "adaptive HTPSO" realizeză 
mecanismul de căutare al soluției optimale, obținută la convergență. 

 Utilizatorul se focalizează pe scrierea PCM, care va conține modelul de ML al obiectului 
supus optimizării, verificarea restricțiilor problemei și calculul funcției obiectiv. 

 Structura OFW a rezolvat eficient cele doua studii de caz referitoare la laminate compozite 
cu 16 straturi de diverse orientări îm raport cu direcția principală de încărcare, 

Rezultatul este semnificativ pentru ca există și doua extensii posibile importante: 

 Algoritmului PSO poate fi înlocuit, în funcție de problemă, cu un alt algoritm metaeuristic pe 
care "computational intelligence" îl oferă. De exemplu, Evolutionary Algorithms, GA, etc. 

 Structura OFW poate fi folosită la rezolvarea și a altor tipuri de probleme de optimizare, nu 
neapărat legate de structura meterialelor compozite, unde modelul obiectului (sau 
systemului) poate fi reprezentat de un model de ML echivalent modelului fizic. 

Contribuția a fost cuprinsă în articolul recent publicat. Raspunsurile la cerintele evaluatorilor și 
interactiunea cu acestia au fost realizate in etapa a 3-a (1 ianuarie -14 februarie 2026). 
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Link către prezentarea succintă a rezultatelor obținute: 
https://www.d3t4h2s.ugal.ro/index.php  
La secțiunea (tabul) "Rezultate" se găsește textul cerut. 
 


